
KHALEESI: Breaker of Advertising and Tracking Request Chains

Umar Iqbal
University of Washington

Charlie Wolfe
University of Iowa

Charles Nguyen
UC Davis

Steven Englehardt‡
DuckDuckGo

Zubair Shafiq
UC Davis

Abstract
Request chains are being used by advertisers and trackers for
information sharing and circumventing recently introduced
privacy protections in web browsers. There is little prior work
on mitigating the increasing exploitation of request chains by
advertisers and trackers. The state-of-the-art ad and tracker
blocking approaches lack the necessary context to effectively
detect advertising and tracking request chains. We propose
KHALEESI, a machine learning approach that captures the
essential sequential context needed to effectively detect adver-
tising and tracking request chains. We show that KHALEESI
achieves high accuracy, that holds well over time, is generally
robust against evasion attempts, and outperforms existing ap-
proaches. We also show that KHALEESI is suitable for online
deployment and it improves page load performance.

1 Introduction

Request chains, most commonly implemented using HTTP
redirects, enable several important web functionalities such as
URL shortening [23], protocol upgrades [31], CDN request
routing [27], etc. They have also been used by advertisers
and trackers to implement cookie syncing as part of program-
matic online advertising [21,26,38,39,57,58]. As mainstream
browsers have recently implemented countermeasures against
third-party cookies [10, 12], advertisers and trackers have
started to use request chains to circumvent these privacy pro-
tections. For example, request chains are being used to imple-
ment bounce tracking [17,69,71] — a tracking technique that
advertisers and trackers use to circumvent third-party cookie
blocking by forcing users to visit them in the first-party con-
text. Request chains have also been used to generate HTTP
Strict Transport Security (HSTS) super cookies [16, 70].

While the malicious use of request chains for drive-by
malware download, spam, and phishing has been extensively
studied [30,34,41,46,52,54,56], the research community has
only recently started to look into their recent increased use

‡
The majority of this work was completed while Steven was at Mozilla.

by advertisers and trackers and effective countermeasures are
still lacking [51]. The state-of-the-art approaches to detecting
and blocking advertising and tracking resources are generally
limited to analyzing requests individually. A slew of heuristic
and machine learning (ML) approaches have been proposed
to analyze information in HTTP request headers and payloads
to detect advertising and tracking requests [28, 45, 62]. These
approaches cannot effectively detect advertising and tracking
request chains since they lack the necessary context to do so.
Several approaches target cookie syncing enabled by request
chains using information in HTTP request and response head-
ers and payloads [26, 38, 39, 58]. These approaches narrowly
target request chains implementing a specific behavior such as
cookie syncing and cannot detect a variety of other advertis-
ing and tracking behaviors implemented using request chains
such as bounce tracking. On a similar note, some browsers
such as Safari [68] defend against specific abuses of request
chains [40, 55, 75]. However, Safari’s Intelligent Tracking
Prevention (ITP) considers the appearance of a request in a
chain but not what it actually does. Thus, since ITP does not
capture the available sequential context, it is prone to mis-
classify benign request chains, limiting its utility to storage
restrictions, e.g., cookie clearing [68], rather than outright
request blocking.

We propose KHALEESI, a machine learning approach that
focuses on sequential context to detect advertising and track-
ing request chains. Specifically, we design a light-weight
representation of request chains to capture the sequence of
requests and responses. This representation allows us to effec-
tively capture the interactions between chains of interrelated
requests triggered by HTTP redirects or embedded scripts. We
leverage this purpose-built representation to extract features
that capture this context and train our classifier. KHALEESI’s
classifier makes a new classification decision in an online fash-
ion as a new request in a chain is loaded. This capitalization
of sequential context enables KHALEESI to more accurately
and efficiently detect advertising and tracking request chains
than prior approaches.

We evaluate KHALEESI across various browser configura-

tions covering landing and internal pages on top-10K websites.
The results show that KHALEESI classifies request chains,
which account for one-third of all requests in our crawls, with
an accuracy ranging from 98.63–99.95%. KHALEESI out-
performs prior approaches by 3.51–40.07 percentage points
in terms of accuracy. KHALEESI is also generally more ro-
bust against evasion attempts such as domain rotation, URL
randomization, and CNAME cloaking. We also show that
KHALEESI’s accuracy holds well over time, degrading less
than 5% after 8 months. Moreover, KHALEESI improves page
load performance on 91.26% of the websites as compared
to stock Firefox and 59.82% of the websites as compared to
Firefox with Adblock Plus.

Our in-depth analysis of KHALEESI’s deployment sheds
light on the information sharing ecosystem enabled by request
chains. We build a request chain graph to understand bilateral
information sharing relationships between different entities
and find that despite individual request blocking, through ad
and tracker blocking extensions, trackers can still share in-
formation with each other via request chains. Our findings
show that KHALEESI’s improved accuracy helps significantly
reduce the proliferation of tracking in the request chain graph.
We also find emerging use cases of request chains to imple-
ment bounce tracking for circumventing recently introduced
restrictions on third-party cookies.

In summary, our key contributions are as follows:

1. We present KHALEESI, an ML approach that capitalizes
on sequential context to detect advertising and tracking
request chains.

2. We conduct a rigorous evaluation of KHALEESI’s accu-
racy and robustness in detecting advertising and tracking
request chains and compare it against prior approaches.

3. We present a lightweight implementation of KHALEESI
as a browser extension. We show that KHALEESI is fea-
sible for online deployment and improves page load per-
formance.

4. We use KHALEESI to analyze how advertisers and track-
ers use request chains for information sharing and cir-
cumvention.

2 Background & Related Work

2.1 Background
A URL redirect (short for redirection) is a standard technique
to forward a user’s request for a resource to another address.
Redirects form a chain of interrelated requests that are of-
ten used to share data between trackers. In a typical HTTP
request, the browser will send a request to a server for a re-
source at a specific location. The server evaluates the request
and responds with the requested resource if it is available.
However, if the server cannot fulfill the request on its own

then it may forward the browser to another server. To this end,
the server responds with an HTTP 3XX response code and in-
cludes a new URL for the resource in the Location response
header. The browser then issues a subsequent HTTP request
to the new URL and the same process ensues. Subsequent
request-response sequences form a request chain.

Request chains can be implemented at multiple layers in
the web stack: via HTTP redirects, HTML redirects, and in
JavaScript.1 HTTP-layer request chains are implemented as
part of the HTTP protocol using 3XX response codes. In this
type of request chain, a browser will be bounced between
locations on one or more servers to retrieve content for a sin-
gle resource. HTML-layer request chains are implemented
through meta refreshes. This type of request chain occurs
when the HTML of a page includes a meta tag that spec-
ifies http-equiv="Refresh" with a new URL in the url
attribute. Because they rely on HTML, meta refresh redi-
rection can only occur at the frame level. JavaScript-layer
request chains can be implemented in a number of ways. Re-
quest chains can be built in the top-level frame when a script
updates window.location to a new URL. Request chains
can be built from embedded resources when a script loads
a chain of resources with intertwined dependencies [46]. A
recent measurement study sampled sites across the Alexa top
1M and found that almost 80% of them use HTTP redirects
and 35% use JavaScript-based top-level redirects [61].

Request chains are most often built from redirects. Redi-
rects serve many necessary functions on the web: they allow
websites to seamlessly migrate content between hostnames,
upgrade connections to more secure protocols (i.e., HTTP to
HTTPS), and implement URL shortening services. However,
redirects are also often used for abuse. Most notably, redirects
are used to obscure URLs that distribute spam or other types
of malware [56]. Request chains also play a core role in on-
line advertising: they allow advertisers and trackers to share
tracking information across origins [21, 26, 57, 58].

Cookie Syncing. Advertisers most often track users across
the web using client-side identifiers stored in cookies. When
advertisers wish to collaborate, they first need to “sync” these
identifiers with each other. Advertisers cannot directly share
these identifiers with each other due to the same-origin policy.
To bypass this restriction, advertisers embed their identifiers
in requests to other advertisers. Such information sharing
between different origins is called cookie syncing [21, 39, 57].
Prior work has shown that some tracking origins sync cookies
with 100+ other origins [38], and that syncing enhances their
coverage by as much as a 7× [58].

Bounce Tracking. To combat cookie-based cross-site
tracking, several browsers, such as Safari and Firefox, now
block third-party cookies [6, 68].2 Advertisers have been

1DNS CNAME records also provide a form of redirection at the DNS
level, but we do not study these.

2Safari blocks all third-party cookies and Firefox blocks third-party cook-
ies from known trackers.

found to bypass third-party cookie blocking by “bouncing”
the browser through a tracking website during an otherwise
unrelated top-level navigation (i.e., by using a top-level redi-
rect) [55, 71]. When embedded as a third-party, the bounce
tracker has no access to cookies. However, once a tracker
is visited directly during a “bounce” it can read and write
cookies as a first-party. This allows it to associate tracking
data with identifiers stored in the users cookies. A recent
study showed that as many as 87% of popular websites might
be bypassing third-party cookie restrictions using such tech-
niques [61].

2.2 Related Work

There are no purpose-built countermeasures against advertis-
ing and tracking request chains. Existing countermeasures
generally operate at the level of individual requests even if
they are occurring as part of a request chain. These counter-
measures do not fully take into account the available context
of request chains. Based on the context they leverage, exist-
ing countermeasures can be divided into three categories: (1)
approaches that only use request information, (2) approaches
that use both request and response information, and (3) ap-
proaches that use both request and response information in a
sequential manner.

There is prior work on detecting malicious use of request
chains such as drive-by malware download [30, 56]. How-
ever, these approaches cannot be readily repurposed to detect
advertising and tracking request chains due to the inherent
differences between malware and tracking. Conceptually, mal-
ware and tracking fundamentally differ, both in their goals
and implementation. Specifically, malware typically attempts
to directly compromise a victim’s device. In contrast, trackers
do not directly aim to compromise a victim’s device. They
instead aim to harvest/exfiltrate information that can then
be used to identify and track users across the web. Further,
malware attempts to hide and uses request chains (e.g., URL
shorteners [34, 54]) to this end. In contrast, trackers use re-
quest chains to carry out their regular activity in a fairly stan-
dardized and distinct manner (e.g., for cookie syncing [43])
compared to malware. Due to these differences, advertising
and tracking request chains have distinct features that are
not captured by prior approaches for detecting malicious re-
quest chains. For example, prior work on detecting malicious
request chains [30, 56] only consider aggregate sequential in-
formation (e.g., number of redirects with obfuscated request
URLs) and generally ignore request and response properties,
which are crucial to detect advertising and tracking behaviors
in request chains.

Request based detection. Content blockers, such as Ad-
block Plus [2], are the most commonly used defense against
advertising and tracking. Content blockers rely on filter lists
(e.g., EasyList [8]). Prior research has tried to use machine
learning (ML) on request information to enhance filter lists.

For example, Bhagavatula et al. [28] extracted features from
the URL (e.g., query string parameters) to train different ML
classifiers for detecting advertising requests. However, filter
lists ultimately rely on a subset of information available in
HTTP requests: the request URL, the content type of the re-
quested resource, and the top level domain of page. Thus,
filter lists cannot detect if trackers engage in cookie syncing
because they do not look at the HTTP Cookie header. Filter
lists do not use sequential context that reflects the intent of
the request occurring in a chain. The lack of consideration of
sequential context also contributes to their susceptibility to
adversarial evasion [22, 35, 65].

Request and response based detection. Some ap-
proaches [15, 45, 76] have tried to use both request and re-
sponse information to detect ads and trackers using ML clas-
sifiers. Yu et al. [76] proposed to detect trackers by observing
the unique values shared by a significant number of third
parties. Privacy Badger [15] labels third-party domains as
trackers if they set cookies on three or more websites. Gugel-
mann et al. [45] proposed to use HTTP request and response
meta data, such as the size of requests and whether cookies
are set, to train their classifier that detects ads and trackers.
Other approaches [38, 39, 58] have been purpose-built to de-
tect cookie syncing in request chains. Papadopoulos et al. [58]
proposed to detect cookie syncing events using an ML classi-
fier by relying on keywords in HTTP requests, such as domain
name and URL parameters, as features. Both Fouad et al. [39]
and Englehardt and Narayanan [38] proposed to detect cookie
syncing by observing identifiers across consecutive requests
and responses. Though these approaches perform better than
the request based detection approaches, they are far from ideal
because they are only able to observe a subset of the advertis-
ing and tracking behaviors that occur in a request chain. For
example, these approaches cannot observe bounce tracking
because it requires an analysis of multiple request and re-
sponse pairs in a sequential manner. Similar to request based
approaches, request and response based approaches are also
susceptible to adversarial evasion [22, 35, 65] because of their
reliance on domain and parameter names (as we demonstrate
later in § 4.3.2).

Request and response sequence based detection. Recent
ML-based approaches have proposed using sequential con-
text to detect ads and trackers, including Safari’s Intelligent
Tracking Prevention (ITP) [68], Brave’s AdGraph/PageGraph
[49, 64], and WebGraph [63]. ITP uses an ML classifier that
detects third-party trackers by monitoring the redirects from
third parties to other domains, the presence of third parties on
other websites as a resource, and the presence of third parties
on other websites as iframes [74]. Though ITP utilizes par-
tial sequential information, by monitoring the number of redi-
rects, it does not capitalize on tracking information revealed
in the requests and responses. Furthermore, ITP is a “post-
hoc” approach to tracker detection, i.e,. ITP is only able to
detect tracking after it has observed the tracking behavior. Ad-

Graph/PageGraph [49,64] use a graph-based ML approach to
detect ads and trackers by monitoring their interactions across
HTML, HTTP, and JavaScript layers. While AdGraph implic-
itly uses sequential context that is obtained through structural
graph properties, it does not explicitly capture HTTP redirects
and HTTP request header information [13, 47]. The absence
of redirects and request header information makes AdGraph/-
PageGraph oblivious to requests that are part of request chains.
More recently, WebGraph [63] improves AdGraph’s robust-
ness by adding features that capture the flow of information
from one entity to the browser’s storage, the network, and to
other entities loaded on a page as well as by excluding content
features. Different from AdGraph, WebGraph incorporates
HTTP redirects and HTTP request header information in its
graph representation. While WebGraph’s graph representa-
tion does capture HTTP redirects, it does not capitalize on
the sequential nature of HTTP requests in a redirect as well
as information in HTTP responses. Moreover, due to signifi-
cant performance overheads, WebGraph operates in an offline
manner and is envisioned to generate filter lists to block ad-
vertising and tracking resources, making it susceptible to the
same issues that hamper filter lists [22, 35, 65].

In conclusion, existing approaches do not fully consider the
necessary sequential context and thus cannot effectively detect
advertising and tracking request chains. To bridge that gap,
we next propose KHALEESI, an ML approach that captures
the sequential context in request chains to effectively detect
advertising and tracking request chains. As compared to prior
work, KHALEESI is novel in two main aspects: (1) it is tailor-
made to detect advertising and tracking request chains (see §
3) and (2) it is thoroughly evaluated on simulated real-world
browser configurations and conditions (see § 4).

3 KHALEESI

In this section, we present the design and implementation
of KHALEESI, a machine learning based approach that uses
sequential context for the early detection of advertising and
tracking request chains. At a high level, KHALEESI organizes
requests into a chain-like structure which captures the se-
quential context of interrelated requests. It then leverages this
sequential context to train a machine learning classifier to
effectively detect advertising and tracking resources. Figure 1
gives an overview of KHALEESI.

3.1 Motivation & Key Idea

Existing approaches detect individual advertising and track-
ing requests in isolation, even when they are part of a re-
quest chain. They utilize only partial request information,
which might indicate what the resource is (i.e., a tracker)
but not what the resource does (i.e., tracking). Such partial
consideration of request information not only makes existing

URL: tracker.com

Cookie: raisin
. . .

Location:tracker2.com?tracker_cookie=raisin
. . .

Response

Request

URL:tracker2.com?tracker_cookie=raisin
Cookie: choc

. . .

Location: tracker.com?tracker2_cookie=choc
. . .

Response

Request

URL: tracker.com?tracker2_cookie=choc

Cookie: raisin
. . .

Status code: 200

Content-type: text/html
...

Response

Request

Organization of requests into chains1

Feature extraction
& labeling2

Model training3

Blocking request
chains

4

Figure 1: KHALEESI: (1) We first organize network and
JavaScript-layer requests into chains. (2) We then label the
request chains with ad and tracker blocking filter lists and
extract features from them. (3) We use the extracted features
to train a machine learning model and (4) use it to detect and
block advertising and tracking request chains. The example
cookie syncing request chain in (1) demonstrates the benefit of
sequential context leveraged by KHALEESI. Specifically, the
dotted blue blocks represent the context utilized by existing
approaches in isolation. Whereas the green arrows represent
the increasing sequential context utilized by KHALEESI.

approaches less accurate, but also susceptible to evasion at-
tempts by advertisers and trackers. Prior research has shown
that the URL-based ad and tracker detection approaches are
vulnerable to hostname and URL path randomization [22,67].
There have been several instances in the wild, where deter-
mined advertisers and trackers have used domain generation
algorithms (DGA), to rotate domains, to evade ad and tracker
blocking [35,77]. Since redirects provide an apparatus to load
resources from different endpoints at the runtime, evasions
attempts (e.g., domain rotation) are even more applicable.

However, the sequentially chained nature of many adver-
tising and tracking requests puts us in an advantageous po-
sition to detect them. For example, we can easily observe
cookie syncing—a fundamental component of advertisement-
related tracking—by analyzing the sequential chain of re-
quests. KHALEESI is the first privacy-enhancing blocking
approach that leverages the sequential context available in re-
quest chains for early detection. To demonstrate the benefit of
the sequential context leveraged by KHALEESI, we show an
example of a cookie syncing request chain implemented using

HTTP redirects in Figure 1 (1). The dotted blue blocks show
the visibility of existing request-based detection approaches
and the green arrows show KHALEESI’s visibility of sequen-
tial context. Existing approaches will use incomplete request
and response information and will fail to link the redirects in
a sequence. Thus, these approaches will miss the fact that the
resources are cookie syncing. In contrast, KHALEESI oper-
ates with a much richer context: it includes information from
requests, responses, and their sequential connectivity. This
allows KHALEESI to make a classification decision that incor-
porates aspects of cookie syncing visible only when multiple
request-response pairs are examined.

3.2 Request Chain Construction
KHALEESI’s request chains capture a wide range of adver-
tising and tracking behaviors such as cookie syncing [18],
bounce tracking [69], and HSTS [16], that are known to ex-
ploit information across multiple requests. KHALEESI cap-
tures advertising and tracking behaviors from both network-
layer and JavaScript-layer request sequences.

Network-layer request chains are constructed by linking
HTTP requests that instruct the browser to initiate a redirect.
Redirects are continuously linked until the response speci-
fies that the request is complete. We also include Javascript-
initiated top-level frame redirections in this category. Top-
level redirects can be triggered in a number of ways, including
by an HTTP 3XX response status or by HTTP response that
includes embedded JavaScript to automatically navigate the
frame to a new URL (e.g., via window.location). Regard-
less of how the redirects are triggered, the end result is the
same: the server sending the HTTP response forwards the
browser to another server.

Network-layer request chains provide decentralized control
because each server in the chain may choose to redirect the
browser to a new location. Decentralized control is preferred
in use cases where each entity wants to control the navigation
flow. For example, cookie syncing is a use case where decen-
tralized control is preferred because each entity decides who
they want to sync cookies with.

JavaScript-layer request chains are constructed by link-
ing together JavaScript-initiated HTTP requests initiated by
the same script. Specifically, we intercept the JavaScript stack
trace each time a request is initiated and associate the request
to the script at the top of the stack. However, not all HTTP
requests that originate from a script are interrelated. For exam-
ple, tag management scripts will initiate a bunch of unrelated
HTTP requests. We filter out unrelated requests by only link-
ing requests that share identifiers with each other. Below we
describe our request linking method:

1. Tokenize the values stored in the Cookie and Set-Cookie
headers, the query string parameters from requests and re-
ferrers, and the values of non-standard HTTP headers. Val-
ues are split on any character other than a-zA-Z0-9_=-.

2. Filter out the tokens that have fewer than 8 characters to
prevent false matches with common identifiers, such as
en-US.

3. Consider plain, Base64 encoded, MD5 hashed, and SHA-1
hashed versions of the tokens as identifiers.

4. Match the identifiers from the preceding request with the
cookies, query string parameters, and non-standard HTTP
request headers of all future requests.

5. If there is a match, we consider the request a part of the
chain.

In principle, subsequent JavaScript-layer requests achieve
the same objective as HTTP redirects and they have been
linked into chains in prior work [46]. In contrast with network-
layer request chains, JavaScript request chains provide central-
ized control because the requests are solely determined by the
originating script without any intervention from external web
servers. Centralized control is preferred in use cases where
only a single central entity wants to control the navigation
flow. For example, header bidding is a use case where central-
ized control is preferred because a single script at the client
side conducts the bidding process.

3.3 Feature Extraction
Next, we use sequential context to extract features that distin-
guish advertising and tracking request chains from functional
request chains. These features are designed based on our
domain knowledge and expert intuition. We use sequential
context to extract three types of features: (1) sequential, (2)
response, and (3) request. Sequential features capture chain-
level properties, whereas request and response features cap-
ture individual HTTP request-level properties. As a whole,
these features provide complete sequential context. In total
we extract 28 features from the request chains (Table 1). Be-
low we describe some of the key features in each category.
We analyze key features in § 4.4.

Sequential features capture communications that reveal
the collaboration between domains. For example, a chain in
which several domains redirect to each other may indicate that
it is an advertising and tracking redirect chain where domains
are trying to share information and identifiers. KHALEESI
captures these properties by considering the number of unique
domains and the length of the chain as features. The number
of unique domains represents the unique number of domains
contacted and the length of the chain capture the total number
of requests in the chain.

Relying on sequence further allows KHALEESI to capi-
talize on the growing chains. Specifically KHALEESI uses
the probability of the previous prediction and the average
probability of the previous predictions features to summa-
rize properties of the prior request and response pairs. The
probability of the previous prediction feature represents the

Sequential Features IG(%)

Average probability of the previous predictions 43.64%
Probability of the previous prediction 41.09%
Length of the chain 6.26%
Consecutive requests to the same domain 5.91%
Number of unique domains in the chain 3.97%

Response Features

Content length 13.56%
P3P in response header 9.88%
Content sub-type (e.g. png) 8.82%
Status code 8.43%
ETag in response header 6.52%
Whether the response sets a cookie 4.55%
Content type (e.g. image) 4.44%
Number of response headers 3.97%

Request Features

Third-party 35.10%
Length of the query string 30.34%
Ad/track. keywords in URL (e.g. pixel, track) 28.09%
Ad/track. keywords in URL surrounded by special char. 27.92%
Number of special characters in query string 27.80%
Length of the URL 22.26%
Subdomain check 12.54%
Accept type (e.g. image, script) 11.92%
Subdomain of the top-level domain check 9.07%
Top-level domain in query string 7.68%
Number of cookies in request 7.22%
UUID in URL 2.71%
Number of request headers 1.78%
Request method (GET or POST) 0.47%
Semicolon in query string 0.13%

Table 1: Features extracted from the request chains along with
their information gain (IG).

classification probability in the previous classification and the
the average probability of the previous predictions feature
represents the average classification probability in prior clas-
sifications, indicating the likelihood of a request chain being
advertising and tracking. To compute the probability of the
previous prediction and average probability of the previous
predictions features during the training phase, we mimic how
these features would be computed during the real-time classi-
fication. Specifically, for each position in the chain, we train
separate surrogate classifiers and classify (test) the redirects
to compute the classification probability. To ensure that we do
not test and train on the same data, we create 10 folds of data
and test each fold by training on the remaining 9 folds. We
limit the training of surrogate classifiers to 21 times because it
is the maximum number of HTTP redirects allowed in Firefox
and only 3.29% of the JavaScript request chains exceed that
length. Sequential features are updated after receiving each
response, and can only be computed after receiving the first
response.

Response features capture properties that indicate the ac-
tions of the loaded content. For example, a response that
loads a 1x1 image and sets a cookie is likely a tracking pixel.
KHALEESI captures these properties by considering content
type, content length, and whether the response sets a cookie
as features. We also use P3P and ETag presence in response
header as features, because P3P is a W3C standard used to
specify cookie access policies [14] and prior research has
shown that the ETag is exploited for tracking [24]. Similar to
sequential features, response features are also computed after
a response is received for a request.

Request features capture properties that can reveal the
intent of the requester. For example, a request to a third-party
domain that contains a large number of parameters in the
query string may indicate that the third party is a tracker.
KHALEESI captures these properties by considering the length
of the URL and whether the request is from a third party.
The length of the URL feature captures the total number of
characters in a URL and the third party feature represents
whether a request is first-party or third-party. We also try to
capture the semantics of the content shared in the query string
which may indicate that the request is advertising and tracking.
Specifically, we use regular expressions to look for UUID in
URL and Ad or screen dimensions in URL. The presence of
UUID in URL indicates the leakage of a unique identifier and
Ad or screen dimensions in URL indicates a request for an
ad with certain dimensions. In contrast to the sequential and
response features, the request features capture information
that is available before a request is sent.

Network-layer vs. JavaScript-layer chains. For most of
the features, the network-layer and JavaScript-layer chains
have similar patterns. This allows us to use a single classifier
to classify both types of chains. However, certain features are
drastically different between network-layer and JavaScript-
layer request chains, and that level of variance can confuse
the classifier. For example, the length of the chain feature has
smaller values for network-layer chains than JavaScript-layer
chains. To mitigate these differences we include chain type as
a meta-feature, which allows the classifier to avoid confusion
when feature values vary significantly.

3.4 Classification

KHALEESI uses the random forest machine learning algo-
rithm to classify request chains because it is better suited to
avoid overfitting [29]. Random forest is an ensemble learning
method that combines multiple decision trees and makes a
prediction by taking the majority decision among trees. Each
decision tree in random forest is trained on a random subset
of the data and a random selection of the features (selected
with replacement). Branches in a decision tree are constructed
by splitting on features that provide the best separation for
positive and negative samples. The random selection of data
and features helps random forest avoid overfitting. We config-

Configuration
Network JavaScript % of

Requests # Chains %AT # Requests # Chains %AT Requests

Cookies allowed (homepage) 192,038 76,816 78.7% 253,582 44,747 65.6% 30.05%
Cookies allowed (interactive) 575,550 229,151 82.3% 1,320,733 145,135 61.1% 34.67%
Cookies blocked (interactive) 432,935 183,230 78.6% 1,195,188 120,879 61.8% 32.00%
Spoofed Safari (interactive) 384,404 166,018 70.5% 1,328,986 130,187 63.0% 32.78%
Webmail (no JavaScript) 217,102 76,938 78.1% – – – 29.54%

Table 2: Total number of requests and request chains crawled for each configuration. AT refers to Advertising and Tracking. % of
requests represents the percentage of network requests in each dataset that are part of request chains.

ure our random forest model to have 100 decision trees with
randomly selected int(

√
N) features for each decision tree,

where N is the total number of features.
KHALEESI’s random forest model classifies individual re-

quests in a request chain based on that request’s sequential
context. Since each request may potentially leak data to an
ad and tracking server, KHALEESI tries to detect the ad and
tracking request chains as early as possible. Note that in the
case of network-layer request chains, no further requests are
made from a chain once a request in the chain is detected and
blocked as advertising and tracking. This is because each new
request in the chain is initiated directly by the previous re-
quest. For JavaScript-layer request chains, all requests that are
not classified as advertising and tracking are still sent by the
script. This is because each request in the chain is initiated by
an external script; blocking one request does not prevent the
script from making another request to a non-blocked domain.

4 Evaluation

We evaluate KHALEESI along several dimensions.

4.1 Accuracy

Data Collection. We evaluate KHALEESI on crawl data col-
lected using version 0.10.0 of OpenWPM [38] in August 2020
in the US. In each crawl, we visit the Alexa top-10K home-
pages. Interactive crawls additionally navigate to random
internal pages by clicking on iframes and anchor tags.

We test the following configurations:

1. A non-interactive crawl using Firefox configured to allow
all third-party cookies.

2. An interactive crawl using Firefox configured to allow all
third-party cookies.

3. An interactive crawl using Firefox configured to block all
third-party cookies.

4. An interactive crawl using Firefox configured to spoof
some basic properties of Safari. Specifically, we con-
figure Firefox to block all third-party cookies, over-
ride the User-Agent HTTP header, and override the

JavaScript-accessible useragent, vendor, appVersion,
and platform properties.

5. A dataset of emails collected by Englehardt et al. [37],
which used an older OpenWPM configured to emulate
an email client by disabling JavaScript and stripping the
Referer header.

These configurations represent a sample of browsing con-
ditions that users may experience and choose while browsing
the web. For example, spoofed Safari with third-party cookie
blocking is an emulation of default settings in the actual Sa-
fari web browser. Table 2 summarizes the chains extracted
from all of the crawled dataset configurations.

Ground truth labeling. We compare KHALEESI’s classi-
fications against a ground truth of advertising and tracking
request chains provided by filter lists. In line with prior lit-
erature [28, 45, 49], we compile the set of advertising and
tracking request chains by using filter lists as ground truth.
Specifically, we use EasyList [8] and EasyPrivacy [9], two of
the most widely used filter lists, to label advertising and track-
ing request chains. We label a request chain as advertising and
tracking if at least one of the requests in the chain matches
the filter lists. Further, we address the imperfect nature of the
ground truth provided by filter lists [22, 48, 65] by doing a
post-hoc validation of KHALEESI’s disagreements with the
filter lists.

Classifier training and testing. We train separate random
forest classifiers for each of the crawled dataset configurations
and use 10-fold cross validation to test the datasets. Specifi-
cally, we divide request chains into 10 folds, where we use 9
folds for training and 1 fold for testing and repeat the process
for 10 times, ensuring that we do not train and test on the
same data.

Results. Table 3 presents KHALEESI’s evaluation across all
of the datasets. When trained on the same configuration where
testing occurs, KHALEESI’s machine learning models perform
well. However, users won’t always have access to a classifier
trained on their exact browser configuration. For example,
KHALEESI may be used alongside other privacy extensions,
or in a browser that blocks all third-party cookies. Thus, we
evaluate KHALEESI’s performance in these unanticipated use
cases. Specifically, we train a random forest classifier on the
homepage dataset and test this classifier on the other datasets.

Configuration Recall Precision Accuracy

Cookies allowed (home.) 98.87% 98.76% 98.63%
Cookies allowed (int.) 99.24% 99.13% 99.06%
Cookies blocked (int.) 99.10% 99.05% 98.97%
Spoofed Safari (int.) 99.06% 99.02% 98.99%
Webmail (no JS) 99.97% 99.97% 99.95%

Table 3: KHALEESI’s accuracy in detection advertising and
tracking request chains with a separate classifier for each of
the crawled datasets.

We find that KHALEESI is less accurate when trained on
one dataset and tested on another (Table 4). Specifically, the
accuracy drops by around 4% to 6% for each of our web crawl
configurations, and by 19.38% for our webmail configuration.
This decline in accuracy is mainly due to differences in the
feature distributions. We highlight a few of these differences
below.

There are several key differences between the homepage
configuration and the others. First, 302 redirects are over-
represented in the homepage crawl. 42.91% of the advertising
and tracking redirect requests in the homepage configuration
use 302 redirects as compared to the interactive crawls where
cookies were allowed (28.56%), where cookies were blocked
(22.91%), and where we spoofed Safari (18.81%). Second,
navigations to new domains are more common in the home-
page crawl. Specifically, 51.32% of the advertising and track-
ing requests navigate to new domains in the homepage crawl
as compared to the interactive crawls where cookies were
allowed (47.49%), where cookies were blocked (35.59%),
and where we spoofed Safari (35.41%). Third, non adver-
tising and non tracking URLs are shorter in the homepage
crawl. Specifically, the lengths of non advertising and non
tracking URL in the interactive crawls are between around
16 to 25 characters longer than the homepage crawl. Fourth,
cookie-related features are also different between the stock
and cookie blocking configurations. Specifically, there are
an average of 2.68 cookies per advertising and tracking re-
quest in the homepage crawl (which does not block third-party
cookies) compared to 0.37 cookies for the configurations that
block third-party cookies. In the latter case, cookies can only
be set and retrieved in the first-party context.

The webmail configuration has several important differ-
ences compared to the web crawls. First, the chains in the
webmail configuration are 50.90% smaller than the homepage
crawl. Second, the content embedded in webmail is almost
exclusively images (i.e., 99.99% of requests), whereas only
59.03% of requests in the homepage crawl are for images.
Third, 301 redirects are much more common in the webmail
dataset. Specifically, 301 redirects are initiated by 25.59%
requests in the webmail configuration, and are almost nonex-
istent in other configurations (e.g., only 0.48% of requests in
the homepage configuration initiate 301 redirects).

Configuration Recall Precision Accuracy

Cookies allowed (int.) 95.59% 94.78% 94.44%
Cookies blocked (int.) 94.90% 92.00% 92.60%
Spoofed Safari (int.) 94.26% 92.16% 92.77%
Webmail (no JS) 81.11% 97.33% 80.57%

Table 4: KHALEESI’s accuracy in detection advertising and
tracking request chains when trained on the homepage crawl
configuration and tested on a different configuration.

KHALEESI vs. filter lists. Since our ground truth is im-
perfect, we analyze disagreements between KHALEESI and
filter lists using the following heuristics inspired from prior
work [49]. We check whether the URL contains any of the
usual advertising and tracking keywords, such as rtb, track-
ing, and adsbygoogle. We also check whether a small track-
ing pixel (i.e., less than 5x5 pixels) is loaded. We apply this
heuristic to the disagreements that occurred while testing with
the homepage configuration classifier (Table 4). We find that
many of the KHALEESI’s “mistakes” are in fact mistakes in
the ground truth. Overall, KHALEESI’s accuracy improves by
0.78% for the non-interactive homepage crawl, 1.26% for the
interactive crawl that does not block cookies, 1.75% for the
interactive crawl that blocks cookies, 1.53% for the interactive
crawl where Safari is spoofed, and 17.08% for webmail crawl
as compared to the original accuracy, computed with filter
lists as reference in Table 4.

We note that EasyList and EasyPrivacy recently (June’21,
i.e., approximately a year after the initial experiments) added
43 of the domains earlier detected as advertising/tracking
by KHALEESI. Some examples include sync.taboola.c
om, siteintercept.qualtrics.com, s0.2mdn.net, and lo
g.popin.cc. To our surprise, we notice that some of these
domains are popular advertising services which should have
been blocked by EasyList and EasyPrivacy. We further no-
tice that the parent domains of some of these advertising
services are already blocked by filter lists on some websites.
For example, all resources from taboola.com are blocked
on independent.co.uk, scoopwhoop.com and technobuff
alo.com. We surmise that the filter lists take a conservative
approach and avoid creating generic rules to block top level
domains to mitigate breakage. Moreover, we find that the
several of the KHALEESI’s detected domains are still cur-
rently unblocked by EasyList and EasyPrivacy. Notable ex-
amples include mediaiqdigital.com, quantumdex.io, and
intentiq.com. It is noteworthy that KHALEESI also misclas-
sifies some functional requests as advertising and tracking.
KHALEESI generally makes mistakes when functional request
features are similar to advertising/tracking request features.
For example, KHALEESI mistakenly detects a thumbnail im-
age served from a CDN (cdn.neighbourly.co.nz) as ad/-
tracking because of its similarity to tracking pixels.

Overall, as compared to filter lists, KHALEESI blocks a

sync.taboola.com
sync.taboola.com
siteintercept.qualtrics.com
s0.2mdn.net
log.popin.cc
log.popin.cc
taboola.com
independent.co.uk
scoopwhoop.com
technobuffalo.com
technobuffalo.com
mediaiqdigital.com
quantumdex.io
intentiq.com
cdn.neighbourly.co.nz

total of 2,326 more tracking requests, corresponding to 1,634
request chains on 1,284 websites. The additional requests
blocked by Khaleesi are to 1,259 distinct advertising/tracking
domains, including taboola.com and intentiq.com, which
are present on 26,096 chains and 6,602 websites.

4.2 Baseline Comparison

Next, we compare KHALEESI’s classification accuracy with
other machine learning approaches that are proposed in prior
research and implemented in browsers. Specifically, we com-
pare KHALEESI with an ML based approach by Bhagavatula
et al. [28] (called BD+) that analyzes each request individu-
ally, Safari’s Intelligent Tracking Prevention (ITP) [74] that
analyzes request-response pairs, and WebGraph [63] a recent
graph-based ML approach that analyzes structural proper-
ties of requests. Our goal is to highlight the marginal ben-
efit of capitalizing on the full sequential context available
in request chains. We also compare KHALEESI with an ML
based approach by Papadopoulos et al. [58] (called CON-
RAD) that specializes in detecting cookie syncing events by
analyzing individual requests. Our goal with this comparison
is to determine whether a specialized cookie syncing detection
approach generalizes to detect all advertising and tracking
request chains. Table 5 reports the accuracy of BD+, ITP, We-
bGraph, and CONRAD in detecting advertising and tracking
request chains.

Configuration Recall Precision Accuracy

B
D

+
[2

8]

Cookies allowed (home.) 93.68% 89.58% 89.72%
Cookies allowed (int.) 87.24% 76.3% 77.09%
Cookies blocked (int.) 88.84% 77.54% 79.54%
Spoofed Safari (int.) 88.76% 73.56% 77.34%
Webmail (no JS) 8.52% 95.64% 15.46%

IT
P

[7
4]

Cookies allowed (home.) 97.43% 58.44% 58.56%
Cookies allowed (int.) 98.00% 58.58% 59.02%
Cookies blocked (int.) 97.68% 56.76% 57.44%
Spoofed Safari (int.) 97.82% 54.05% 55.18%
Webmail (no JS) 100% 86.40% 86.40%

W
eb

G
ra

ph
[6

3] Cookies allowed (home.) 42.31% 74.24% 68.32%
Cookies allowed (int.) 12.97% 49.13% 42.48%
Cookies blocked (int.) 16.75% 65.96% 42.93%
Spoofed Safari (int.) 16.04% 59.46% 44.04%
Webmail (no JS) – – –

C
O

N
R

A
D

[5
8] Cookies allowed (home.) 95.78% 95.75% 95.12%

Cookies allowed (int.) 91.93% 92.74% 91.23%
Cookies blocked (int.) 78.66% 82.14% 78.61%
Spoofed Safari (int.) 77.77% 77.74% 76.63%
Webmail (no JS) 96.24% 97.51% 94.36%

Table 5: BD+, ITP, WebGraph, and CONRAD’s classification
accuracy in detecting advertising and tracking request chains
across different datasets.

Comparison with BD+ [28]. We use the best perform-
ing k-Nearest Neighbors (kNN) ML classifier called BD+
by Bhagavatula et al. [28] (see § 2.2 for details). For a fair
comparison, we train BD+ on the same set of top-10K web-
sites as used to train KHALEESI. Further, we consider the
offline setting for BD+, where features are computed at the
end of page load, as opposed to the online setting used by
KHALEESI, where features are computed on the fly as the
page is being loaded.3 We again use 10-fold cross validation
to compute the accuracy of the classifier. As compared to
KHALEESI, BD+ achieves 5.19% less recall, 9.18% less pre-
cision, and 8.91% less accuracy. Table 5 shows that the trend
holds for the interactive, cookie blocking, spoofed Safari, and
webmail configurations. The lack of sequential context makes
it challenging for such request-based approaches to accurately
detect advertising and tracking chains. For example, Listing 1
provides an advertising and tracking request chain that ap-
pears to be cookie syncing, but is missed by BD+ because
it does not use the response and sequence information in its
detection. KHALEESI is able to successfully capture the ap-
pearance of cookie syncing in the request chain and correctly
detects it as advertising and tracking.

1 /* 1st request and response pair */
2 URL: sync.republer.com/match?dsp=sape&qset=1
3 Cookie: 88661a5f-2d71-4780-95af-e9d2edd1eebb
4 Location: sync.bumlam.com/?src=rp1&uid=
5 88661a5f-2d71-4780-95af-e9d2edd1eebb
6

7 /* 2nd request and response pair */
8 URL: sync.bumlam.com/?src=rp1&uid=
9 88661a5f-2d71-4780-95af-e9d2edd1eebb

10 Location: sync3.adsniper.ru/?src=ss1&s_data=
11 CAEQABjikM32BV....ZDFlZWJi
12
13 /* 4th request and response pair */
14 URL: sync3.adsniper.ru/?src=ss1&s_data=
15 CAIQARjikM32BVIEioaQK2Ik....gkNw**
16 Location: sync.bumlam.com/?src=rp1&s_data=
17 CAIQARjikM32BVIEioaQK2Ik....gkNw**
18

Listing 1: A request chain that appears to be cookie syncing
missed by the request based approach used by BD+ [28]. The
shared identifiers are highlighted in red.

Comparison with ITP [74]. We use ITP’s SVM classifier
that is shipped in the production Safari web browser [74] (see
§ 2.2 for details).4 We test ITP on the request chains extracted
from top-10K websites. We find that ITP suffers from a lot
of false positives – with only 58.44% precision. ITP achieves
1.44% less recall, 40.32% less precision, and 40.07% less
overall accuracy as compared to KHALEESI. Table 5 shows
that the trends hold for interactive stock, cookie blocking,
spoofed Safari, and webmail configurations. Note that Sa-
fari uses ITP’s detections only to purge storage and does not

3Note that the offline setting puts BD+ in an advantageous position
because post-hoc feature computation uses additional information that is not
otherwise available in the online setting.

4All versions of the ITP use the same classifier released with the initial
version 1.0.

taboola.com
intentiq.com

block ads and trackers. Thus, ITP does not cause excessive
website breakage as it would if it was used to outright block re-
quests. The lack of comprehensive sequential context makes it
challenging for such request-response based approaches to ac-
curately detect advertising and tracking chains. For example,
Listing 2 provides an example of a request chain that appears
to be used for authentication, but is incorrectly detected by
ITP as advertising and tracking due to over-generalization on
partial sequential context. Note that the KHALEESI is able
to successfully capture the non-advertising and non-tracking
signal, i.e. the absence of shared identifiers, in the request
chain and detects it as a functional.

1 /* 1st request and response pair */
2 URL: adobe.sharepoint.com/_forms/default.aspx?
3 ReturnUrl=/_layouts/15/Authenticate
4 .aspx?Source%2F&Source=cookie
5 Cookie: RpsContextCookie=U291cmNlPSUyRg==
6 Location: login.windows.net:443/fa7b1b5a-7b34-
7 4387-94ae-d2c178decee1/oauth2/authorize
8 ?client_id=00000003-0000-0ff1-ce00-0000
9 ...

10 &redirect_uri=adobe.sharepoint.com....
11

Listing 2: A request chain that appears to be authentication
related. It is incorrectly classified as advertising and tracking
by ITP.

Comparison with WebGraph [63]. We also compare
KHALEESI with WebGraph [63] (see § 2.2 for a high-level
comparison of WebGraph and KHALEESI). For a fair compari-
son, we train WebGraph’s random forest classifier on the same
set of top-10K websites as used to train KHALEESI. We use
10-fold cross validation to compute the accuracy of the classi-
fier. We find that WebGraph suffers from a lot of false nega-
tives – with only 42.31% recall. As compared to KHALEESI,
WebGraph achieves 56.56% less recall, 24.52% less preci-
sion, and 30.31% less accuracy. Table 5 shows that the trend
holds for the interactive, cookie blocking, and spoofed Safari
configurations.5

WebGraph performs worse because it is designed to capture
a wide variety of advertising and tracking patterns that over-
shadow the patterns specifically implemented through request
chains. For example, Number of requests sent by node
and Average degree connectivity of node are two of
the most important features of WebGraph; however, they dis-
proportionately impact the detection of HTTP request chains.
Specifically, in WebGraph’s representation, nodes correspond-
ing to HTTP request chains have lower values for these fea-
tures because each node is only connected to the prior and
the next node in a sequence, forming a chain like structure.
Whereas, nodes corresponding to JavaScript request chains
have higher values for these features because all originating

5We were only able to test 150 randomly selected websites due to Web-
Graph’s significant performance overhead. WebGraph’s open-sourced code
took several hours and more than 300 GB of memory on 50 processor cores
to process these websites, for each configuration. We could not evaluate
Webmail crawl because its schema is not compatible with WebGraph’s code.

requests from a script are connected to one script node, form-
ing a start like structure. These differences are reflected in
its classification results, WebGraph achieves an accuracy of
85.40% (on par with the reported accuracy in the paper [63])
for JavaScript request chains but only 22.18% for HTTP re-
quest chains.

Comparison with CONRAD [58]. We implement the de-
cision tree ML classifier called CONRAD by Papadopoulos
et al. [58] (see § 2.2 for details). For a fair comparison, we
train the decision tree classifier on the same set of top-10K
websites as used to train KHALEESI. However, we do not
consider the Browser and TypeOfEntity features used in the
original classifier. We ignore the Browser feature because
we only rely on one browser to collect the data. We ignore
the TypeOfEntity feature because it relies on labels from the
disconnect tracking prevention list [7], which is essentially
the same as using ground truth as a feature. We use 10-fold
cross validation to compute the accuracy of the classifier.

As compared to KHALEESI, CONRAD achieves 3.09%
less recall, 3.01% less precision, and 3.51% less accuracy.
Table 5 shows that the trend holds for the interactive, cookie
blocking, spoofed Safari, and webmail configurations. For
webmail configuration, CONRAD performs better as com-
pared to KHALEESI. CONRAD’s high accuracy comes from
its reliance on domain and URL parameter names as features.
Specifically, the top performing features include whether the
requests are going to popular advertisers and trackers, such as
doubleclick.net and fbcdn.net and whether the URL em-
beds parameters commonly used by advertisers and trackers,
such as id and uid. However, relying on hard coded values
makes the classifier overfit and susceptible to evasion attacks
(see § 4.3.2 for details). For example, Listing 3 provides an
advertising and tracking request chain from luxup.ru, a less
known advertising service, which appears to engage in cookie
syncing but it is missed by CONRAD. KHALEESI is able to
successfully capture the appearance of cookie syncing signal
in the request chain and correctly detects it as advertising and
tracking.

1 /* 1st request and response pair */
2 URL: luxup.ru/tr/22710/&r=&t=1590939122591
3 Location: adlmerge.com/md/?mdback=luxup.ru/tr/22710/
4 &r=&t=1590939122591
5

6 /* 2nd request and response pair */
7 URL: adlmerge.com/md/?mdback=luxup.ru/tr/22710/
8 &r=&t=1590939122591
9 Set-Cookie: __LXGUID=6833031521866537697

10 Location: luxup.ru/tr/22710/&r=&t=1590939122591
11 &md=6833031521866537697
12

Listing 3: A request chain from a lesser known advertiser
that appears to be cookie syncing. This chain is missed
by CONRAD [58] because of CONRAD’s reliance on
popular domain and parameter names as features. The shared
identifiers are highlighted in red.

Overall, the comparison with prior approaches, which do

doubleclick.net
fbcdn.net
luxup.ru

not or only partially use sequential context, demonstrates the
importance of leveraging the full sequential context for accu-
rate detection of advertising and tracking request chains.

4.3 Robustness Analysis

Next, we evaluate KHALEESI’s classification accuracy over
time and its robustness against evasion.

4.3.1 Classification accuracy over time

Machine learning models are prone to lose their effectiveness
over time. Specifically, the underlying data distributions on
which the model is trained change over time, in unforeseen
ways, making predictions less accurate as the time passes [66].
KHALEESI tries to slow down the degradation by learning on
fundamental properties of request chains, i.e., their sequen-
tial context, and by avoiding frequently changing variables
such as domain names. Learning on sequential context makes
KHALEESI’s machine learning model generalizable, which
can adapt to new, previously unseen, request chains because
they will have the same distribution as the request chains that
were used to train the initial model. To evaluate KHALEESI’s
accuracy over time, we test it on a new data set crawled in
April 2021, i.e., 8 months after the initial crawl on which the
model was trained. The results show that KHALEESI achieves
an accuracy of 94.07% with a recall of 97.26% and a preci-
sion of 93.11% in detecting advertising and tracking request
chains. We note that the accuracy only drops by 4.56%, re-
call by 1.61%, and precision by 5.65% due to the drift in the
request chain distributions over time.

Over 8 months, we note few changes in distribution of ad-
vertising and tracking requests. The most significant changes
are in number of advertising and tracking keywords in re-
quests and the number of XMLHttpRequests, which increase
by 6.45% and 6.37%, respectively. We also note that the ad-
vertising and tracking requests contains 0.63% less cook-
ies on average. The increase in number of advertising and
tracking keywords and XMLHttpRequests, coupled with de-
crease in cookies, perhaps indicates a increasing trend towards
usage of alternative tracking mechanisms, e.g., fingerprint-
ing, triggered by third party cookie blocking by main-stream
browsers [5, 68]. We conclude that, to keep the accuracy con-
sistent over time, the model must be fine-tuned continuously,
which might include adding features to capture new patterns
or removing features that capture inconsistent patterns.

4.3.2 Robustness against evasions

Due to the countermeasures against cross-site tracking by
main-stream browsers, such as Safari [68] and Firefox [6],
trackers are increasingly relying on evasive tactics to circum-
vent the deployed countermeasures. Prior research has shown
that the URL-based ad and tracker detection approaches are

vulnerable to domain rotation and URL path randomization
[22, 67]. Since KHALEESI also relies on request properties,
in addition to response and sequential properties, we evaluate
its robustness against real world domain rotation and URL
randomization attacks and as well as hypothetical response
and sequence manipulation attacks. Specifically, we evaluate
KHALEESI against real-world domain rotation [35, 77] and
CNAME cloaking [60] attacks and hypothetical query string
manipulation, response header removal, and chain shortening
attacks. We describe these evasion attacks below:

1. Domain rotation involves randomizing the label that is
followed by the effective Top Level Domain (eTLD), e.g.,
example.com, example is the label and com is the eTLD.

2. CNAME cloaking involves switching the third party’s
eTLD+1 to the first party’s eTLD+1, along with the addi-
tion of the third party’s label as a sub domain.

3. Query string manipulation involves the randomization,
removal, and MD5 hashing of parameter name-value pairs.

4. Response header removal involves the removal of the
ETag and P3P headers from the response.

5. Chain shortening involves the random truncation of re-
quest chains by 50–70%.

To launch these attacks, we randomly select 100 adver-
saries from the top 20% of the most common advertising and
tracking third parties, which account for 16.35% of all the
chains in our data set, i.e., the cookies allowed homepage con-
figuration. Our selection includes prominent advertisers and
trackers, such as Criteo and PubMatic. Further, to provide a
relative perspective, we compare KHALEESI robustness with
CONRAD [58] and BD+ [28], i.e., two of the best performing
approaches from § 4.2.6

Table 6 presents the adversaries’ success rate against
KHALEESI, CONRAD, and, BD+ with different evasion at-
tacks. Success rate is defined as the percentage of classi-
fication switches from advertising and tracking to non ad-
vertising and non tracking. In case of KHALEESI, we note
that the adversaries are able to evade KHALEESI between
1.31–13.85% of the time. Whereas, in case of CONRAD and
BD+, the adversaries are able to evade the classifier between
8.57–9.71% and 10.41–21.51% of the time, respectively. It is
noteworthy that KHALEESI is much more robust as compared
to CONRAD and BD+ for all of the evasion attacks, except
for CNAME cloaking as compared to CONRAD, where the
adversaries are able to switch 4.35% more instances from
advertising and tracking to non advertising and non tracking.

We note that KHALEESI is not solely reliant on any of the
request, response, or sequential features and instead its robust-
ness, against adversarial evasion comes from complementary

6Response header removal and chain shortening attacks are not applicable
to CONRAD and BD+ because they do not use response headers, other than
the status code, and sequential context of request chains.

Evasion attack KHALEESI CONRAD [58] BD+ [28]

Domain rotation 1.75% 8.57% 10.41%
CNAME cloaking 13.85% 9.50% 21.51%
QS manipulation 3.94% 9.71% 11.67%
Response removal 1.67% – –
Chains shortening 1.31% – –

Table 6: Evasion rate against KHALEESI, CONRAD, & BD+.

accuracy gained from request, response, and sequential fea-
tures. Specifically, we note that request, response, and sequen-
tial features alone provide an accuracy of 98.69%, 91.94%,
and 93.11%, respectively. In contrast, CONRAD has a strong
reliance on domain and URL parameter names as features.
We note that domain and URL parameter names alone pro-
vide an accuracy of 93.51%, while their exclusion provides
an accuracy of only 82.32%.

Overall, we acknowledge that KHALEESI is not fool-proof
against an adversary that can manipulate most of its features
simultaneously (see § 6 for more details). We conclude that
KHALEESI is fairly robust against adversarial evasions.

4.4 Feature Analysis
To shed light into KHALEESI’s inner workings, we analyze
a few of the most important features, with high information
gain [59] across sequential, response, and request feature cat-
egories. These features are the most helpful for KHALEESI
in distinguishing advertising and tracking requests from non-
advertising and non-tracking requests in the request chains.

Probability of previous prediction. The probability that
the previous prediction was advertising and tracking cap-
tures the information capitalized by KHALEESI as the chains
grow longer in length. Intuitively, using the prior probability
helps KHALEESI make a better determination. For example,
if KHALEESI is moderately confident that the request will
load an ad or a tracker, it can reaffirm that by leveraging the
confidence from its prior prediction. Figure 2a plots the distri-
bution of the probability of previous prediction. We note that
85.47% of the non-advertising and non-tracking requests have
less than 25% probability of being an ad or a tracker. Whereas,
93.74% of the advertising and tracking requests have greater
than 25% probability in being an ad or a tracker.

P3P in response header. P3P (Platform for Privacy Pref-
erences) was a W3C standard that allowed websites to convey
their privacy policies in a standardized format [14]. Internet
Explorer by default rejected third-party cookies in the first-
party context unless the cookie usage was specified by a P3P
header. P3P was implemented by Internet Explorer, Edge, and
Mozilla [1, 53] as well as supported by thousands of domains
at one point [36]. Currently, no modern browser supports P3P;
only some older versions of Internet Explorer have support
P3P. Despite this, we find that many third parties still use P3P
as the HTTP response header to specify their cookie usage

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

qu
es

ts

AT
NON-AT

(a) Probability of previ-
ous prediction.

P3P absence P3P presence
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

sp
on

se
s AT

NON-AT

(b) P3P is response
header.

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

qu
es

ts

AT
NON-AT

(c) Length of URL.

Figure 2: Distribution of top sequential, response, and request
features. AT refers to advertising and tracking requests and
NON-AT refers to non advertising and non tracking requests.

policy. Figure 2b shows the prevalence of P3P headers in
request chains. It can be seen from the figure that 90.99% of
advertising and tracking responses have a P3P header as com-
pared to only 9.01% of the non-advertising and non-tracking
responses.

URL length. Advertisers and trackers collect sensitive in-
formation from users’ devices and share it with others as URL
query strings. This so-called link decoration is increasingly
being used to bypass privacy protections against third party
cookies [71–73]. As can be seen in Figure 2c, this informa-
tion sharing leads to longer URLs for advertising and tracking
requests. 38.78% of advertising and tracking URLs are longer
than 200 characters, while only 7.79% of the non-advertising
and non-tracking URLs are longer than 200 characters.

4.5 Breakage Analysis
Content blocking tools are prone to website breakage be-
cause of incorrect blockage of functional resources or their
dependence on advertising and tracking resources. To be us-
able in the real-world, KHALEESI’ breakage must be on par
with existing content blocking tools such as Adblock Plus [2].
Therefore, we evaluate and compare KHALEESI’s breakage
with Adblock Plus7 on popular websites. We manually quan-
tify website breakage on a random sample of 100 websites
from top-1K list by conducting common browsing actions
such as reading articles, adding products to carts, and opening
sub pages of a website. We open each website using stock
Firefox as a control and with Adblock Plus and KHALEESI
as treatments. We open three browser instances side by side,
analyze the website functionality on each of them, and assign
one of the following labels:

1. Major: The core functionality of the website is broken
and the user cannot fulfill their objective. For example, the
user is unable to submit a form or book a flight.

2. Minor: The non-core functionality of the website is bro-
ken but the user is able to fulfill their objective. For exam-
ple, some icons or images are missing on the webpage.

7We configure Adblock plus with the same filter lists, i.e., EasyList [8]
and EasyPrivacy [9], on which KHALEESI was trained.

3. None: The experience is similar across control and treat-
ments.

Tool None Minor Major
% # % # %

KHALEESI 90.0 93.8 3.5 3.6 2.5 2.6
Adblock Plus 90.5 94.3 3.0 3.1 2.5 2.6

Table 7: Average breakage assessment of 2 reviewers.

To mitigate potential bias and subjectivity in manual break-
age analysis and avoid any inconsistencies due to dynamic
content, we asked two reviewers to independently analyze the
test websites at the same time. The two reviewers achieved
a high 94.79% agreement in their breakage determinations.
Table 7 presents the averaged breakage results8. We note that,
KHALEESI and Adblock Plus cause no breakage on 93.8%
and 94.3% of the tested sites, respectively. Both cause ma-
jor breakage on the same 2.6% of the sites. Only in one
instance, KHALEESI misclassified and blocked a request to
intercomcdn.com, leading to a minor breakage (missing chat
button) on the website.

Authentication & Purchase Scenarios. Since request
chains are widely used in authentication and purchase flows,
we manually evaluate KHALEESI’s breakage in these scenar-
ios. We analyze both same-site and cross-site scenarios. To
test same-site authentication flows, we attempt to log into
Facebook, Amazon, and Twitter. Similarly, to evaluate cross-
site authentication flows, we attempt to log into NYTimes and
EBay using 3 popular federated identity providers (Google,
Facebook, Apple). To test purchase flows, we log into Ama-
zon, search for a product, add it to the cart, and make an actual
purchase.

We are able to successfully complete authentication
and purchase flows when using KHALEESI. Specifically,
KHALEESI only blocked advertising and tracking resources
on the tested websites and did not break any login and pur-
chase flows. Note that authentication and purchase flows
cannot be automatically tested at scale. Specifically, testing
large-scale authentication scenarios require the availability
of login/payment credentials for a large number of online
services. Further, automated login and purchase flows often
trigger CAPTCHAs that cannot be trivially bypassed.

We conclude that KHALEESI’s breakage is on par with
Adblock Plus for regular browsing sessions and it does not
break any authentication and purchase flows.

4.6 Performance
Ad and tracker blocking tools generally improve the page
load time by blocking content; however, at the same time,

8Out of the 100 websites, 5 websites failed to load in both control and
treatments, so we exclude them from our analysis.

they also incur performance overhead. In traditional filter list
based ad and tracker blocking tools, overheads are incurred
in matching requests against filter lists and removing content
from DOM. In ML based ad and tracker blockers, there are
overheads to extract features and use the model to classify
requests. As we show next, KHALEESI incurs overheads but
improves the performance, significantly more, as compared
to other ad and tracker blocking tools.

KHALEESI’s performant implementation. We imple-
ment KHALEESI as a browser extension by extending the open
source implementation of Adblock Plus [3]. Since KHALEESI
is designed to only block advertising and tracking request
chains, we complement KHALEESI with EasyList [8] and
EasyPrivacy [9] for blocking non-request-chain based ads
and trackers. Specifically, request chains are routed through
KHALEESI and non-request-chain based requests are routed
through filter lists. We create a lightweight in-memory repre-
sentation of request chains and extract features from requests
in a streaming fashion, before they leave the browser, and
response headers, before even the whole response is received
and parsed by the browser. Extracting features from response
headers, before they are parsed, allows us to save time by
avoiding the need to wait for their parsing and rendering.
Moreover, we flush the in-memory representation when the
browser navigates to another page. For network layer request
chains, however, we flush the in-memory representation as
soon as we block them or they return a non-redirect response.

KHALEESI’s performance comparison. We quantify
KHALEESI’s overheads and performance improvements by
comparing it against stock Firefox and Firefox with Adblock
Plus.9 We use a standard desktop machine with Windows 10
OS, 16GB of RAM, and an i7 processor. We also simulate
consistent network conditions by setting the bandwidth to 15
Mbps with a latency of 100 ms. We measure the page load
time10, averaged over five runs for each website, on Alexa
top-500 websites. Figure 3 shows KHALEESI’s page load
time as compared to stock Firefox and Adblock Plus and as
well as the Adblock Plus’s performance against stock Firefox
configuration. As compared to stock Firefox, we find that
KHALEESI improves the page load time on 91.26% of the
websites. KHALEESI’s improvements over stock Firefox are
due to blocking advertising and tracking content, which re-
sults in less network requests and less rendering. As compared
to Adblock Plus, we find that the KHALEESI improves the
page load time on 59.82% of the websites. The performance
gains over Adblock Plus highlight KHALEESI’s added benefit
of blocking advertising and tracking request chains. Thus, we
conclude that KHALEESI’s improved accuracy outweighs its
minor feature extraction and classification overheads, making
it suitable for a performant online deployment.

9We disable Firefox’s Enhanced Tracking Protection (ETP) and configure
Adblock Plus with EasyList [8] and EasyPrivacy [9].

10Page load time is measured as a difference between navigationStart
and loadEventEnd events of the Performance API.

intercomcdn.com

8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8
Page load time overhead (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 w

eb
sit

es

Adblock Plus vs. Stock
Khaleesi vs. Stock
Khaleesi vs. Adblock Plus

Figure 3: KHALEESI’s overhead in terms of page load time.

5 Discussion

In this section, we analyze KHALEESI’s findings to shed
light into the online information sharing ecosystem through
graph analysis and case studies emerging use cases of request
chains.

5.1 Request Chain Graph
Next, we build the request chain graph to understand bilateral
information sharing relationships between different entities.
To this end, we construct a graph such that the nodes repre-
sent domains and the edges represent consecutive domains
in request chains. Note that edges are directed and weighted:
the source/destination of the directed edge represents the
source/destination in the redirect and the edge weight repre-
sents the frequency of their co-occurrence.11 Also, the size of
a node is proportional to its degree and the color represents
degree ratio—ratio of in-degree and out-degree—red/blue
represents higher/lower in-degree as compared to out-degree.
Note that for the node colors, darker shades of either blue or
red mean higher asymmetry and lighter shades mean higher
symmetry.

Figure 4(a) plots the largest strongly connected component
(LSCC) of the request chain graph constructed using the first
crawl configuration (cookies allowed (homepage)). The nodes
with higher/lower degree ratios (in shades of red/blue) are des-
tinations/sources of redirects. We note that the destinations of
most of the redirects are typically well-known advertising and
tracking domains such as doubleclick.com and pubmatic.com.
In contrast, their sources typically include general-purposed
cloud providers such as cloudfront.net as well as tag manage-
ment services such as googletagmanager.com. This indicates
that advertising and tracking domains are generally the recip-
ients of tracking information from other domains.

Other SCCs (not shown in Figure 4) are much smaller

11For example, a request chain example1.com→ sub.example2.com→ ex-
ample3.com would be represented in a graph with 3 nodes (example1.com, ex-
ample2.com, example3.com) and 2 edges (example1.com→ example2.com,
example2.com→ example3.com).

in size (most of them with around 10 nodes or less).
We note that most of the nodes in these smaller SCCs
are mostly cliques of related domains (e.g., amazon.fr →
amazon.com, towardsdatascience.com→ medium.com) and
sometimes country-specific domains (e.g., admaster.com.cn,
reachmax.cn, yoyi.com.cn). Also not shown in Figure 4 are
self-loops, which mostly represent sub-domains which appear
to be trying to sync cookies with their parent domains (e.g.,
aliexpress.com, admicro.vn).

Figures 4(b) and (c) plot the LSCC of the request chain
graph after blocking using filter lists and KHALEESI, respec-
tively. It is evident that the request chain graph becomes sig-
nificantly more sparse when advertising and tracking requests
are blocked by either filter lists or KHALEESI. More specif-
ically, we note that both node sizes and number of edges
significantly reduce for filter lists or KHALEESI in Figures
4(b) and (c) as compared to no blocking in Figure 4(a). In
fact, some of the largest nodes in Figure 4(a) (e.g., rubiconpro-
ject.com) completely disappear in Figures 4(b) and (c). Com-
paring Figures 4(b) and (c), we note that even more nodes
(e.g., taboola.com) disappear and edges’ weights decrease go-
ing from filter lists to KHALEESI. In Figure 4(c), we observe
mostly smaller sized nodes in blue colors represent popular
cloud providers such as amazonaws.com and cloudfront.net.

No Blocking Filter lists KHALEESI

Average Clustering 0.03283 0.00214 0.00155
of SCC 10221 9852 9732
of Nodes in LSCC 865 83 52
Top Degree in LSCC 603 88 77

Table 8: Statistics of graphs in three configurations.

To further analyze these differences quantitatively, Table
8 lists a few key graph connectivity metrics based on cluster-
ing and connected components. These metrics quantitatively
demonstrate that redirect graphs progressively become more
fragmented as we go from no blocking to blocking with fil-
ter lists and KHALEESI. For example, the size of the LSCC
decreases by 10× due to filter lists, and further decreases by
37% due to KHALEESI. We note a similar trend for other
reported metrics in Table 8.

In sum, our analysis shows that request chains enable
widespread information sharing between third-party adver-
tising and tracking domains. Both filter lists and KHALEESI
help mitigate this by degrading the graph connectivity. We
also conclude that KHALEESI is more effective than just filter
lists in mitigating the information sharing by advertising and
tracking request chains.

5.2 Analysis of Request Chains
We analyze use cases of request chains for advertising and
tracking.

doubleclick.net

pubmatic.comcriteo.com

dotomi.com

rubiconproject.com

taboola.com

google.com

adnxs.com

(a) No Blocking

taboola.com

amazonaws.com
cloudfront.netherokuapp.comgoogle.com

shopify.com

chimpstatic.com

(b) Filter Lists

amazonaws.com
cloudfront.net herokuapp.comgoogle.com

shopify.com

chimpstatic.com

(c) Khaleesi

Figure 4: Request chain graph of redirects between top-50 most popular domains.

Bounce tracking occurs in cookies blocked crawl config-
urations. Bounce tracking is fairly broadly defined [69], and
there are a number of different ways it can be achieved. For
example, a bounce tracker may directly redirect a tab to the
tracker’s webpage or it may rewrite links on the webpage,
such that when links are clicked, the webpage is redirected
to the tracker’s webpage. Further, the redirect may end on
the same or a different webpage. However, the end objec-
tive of bounce tracking still remains the same, i.e. it provides
cookie access to domains that are typically only loaded in the
third-party context (where cookie access may be blocked). To
measure bounce tracking, we create a fairly precise heuristic.
We consider third parties to be bounce trackers if they:

1. Start from the top-level main frame

2. Navigate to one or more third party webpages,

3. The navigated third party webpages set cookies, and

4. The third party webpage navigates back to the first party
webpage.

Since bounce tracking can only be conducted by network
level requests chains or JavaScript request chains originated
with window. location, we exclude other JavaScript request
chains for measuring bounce tracking in the first heuristic. Fur-
ther, we only investigate the cookies blocked configurations,
i.e. cookie blocked interactive and spoofed Safari interactive,
for bounce tracking because bounce tracking is a workaround
to bypass third-party cookie blocking.

Overall, we find 14 domains, across both cookie blocked
interactive and spoofed Safari interactive configurations, that
are classified as bounce tracking. Table 9, shows the top do-
main classified as bounce trackers. We find that two of the
domains classified as bounce trackers, i.e. adform.net and
flashtalking.com, provide purpose-built workarounds to
third party cookie blocking [4, 11]. For instance, Adform
claims to use a “universal ID based on a first party cookies” by
redirecting the users from their visited website to an interme-
diate website and redirecting them back to the visited website.
The two most popular domains classified as bounce trackers,
i.e. googleadservices.com and adsrvr.org, are services
that provide generic ad-tech solutions. queue-it.net is a

Top Domains Spoofed Safari Cookies blocked
of websites # of websites

googleadservices.com 3073 1773
adsrvr.org 1377 1538
adform.net 322 -
flashtalking.com 141 -
queue-it.net 9 -
ojrq.net - 19
bngpt.com (NSFW) 2 5

Table 9: Top domains classified as bounce tracking across
the cookie blocked interactive and spoofed Safari interactive
configurations.

non-advertising and non-tracking service that provides queu-
ing services to control website traffic.

Request chains are widely used in cookie syncing. Table
10 shows the prevalence of cookie syncing detected using
CONRAD [58] across different crawl configurations.12 We
find that more than half of the request chains in most con-
figurations participate in cookie syncing. In fact, more than
half of the domains in request chains participate in cookie
syncing across all of the configurations with more than two
thirds of domains participating in cookie syncing in the web-
mail configuration. We notice that domains in the interactive,
cookies allowed crawl send and receive the most identifiers
on average. Note that doubleclick.net is the most popular
domain detected to participate in cookie syncing across all
web crawl configurations, and syncs to as many as 1,100 dif-
ferent domains in the interactive crawl that spoofed Safari.
Surprisingly, we note that cookie syncing is more common
in configurations where we block cookies, i.e. the interac-
tive cookies blocked crawl and the interactive spoofed Safari
crawl. We find that a vast majority of cookie syncing cases
involve exchange of potential identifiers in query strings and
non-standard HTTP request headers. Not shown in the table,
but 91.13% of the cases in the spoofed Safari interactive crawl
and 91.25% of the cases in the interactive cookies blocked

12We tweak the detection method to consider identifiers from multiple lo-
cations in the request/response header and also consider their hashed versions
(see JavaScript request linking in § 3.2 for more details).

adform.net
flashtalking.com
googleadservices.com
adsrvr.org
queue-it.net
doubleclick.net

Configuration Request Domains Send Receive Top Domain Send Domain Receive Domain
Chains (%) (%) (average) (average) (count) (count)

Cookies allowed (home.) 54.37% 50.87% 6.49 5.86 doubleclick.net 322 336
Cookies allowed (int. 54.54% 52.82% 7.39 7.00 doubleclick.net 828 872
Cookies blocked (int.) 28.49% 55.40% 6.80 6.81 doubleclick.net 1,060 1,012
Spoofed Safari (int.) 27.82% 57.08% 6.54 6.67 doubleclick.net 1,100 1,071
Webmail (no JS) 70.59% 78.72% 2.24 4.00 liadm.com 19 84

Table 10: Prevalence of cookie syncing in request chains across all of the crawl configurations. Send/Receive Average represents
the average number of domains per request chain to/from which cookies are shared/received. Top Domain refers to the domain
that is most frequently detected to cookie sync. Send/Receive Domain Count represent the total number of distinct domains to
which top domains share/receive cookies to/from.

crawl represent such cases. We also find a high prevalence of
identifiers that have been Base64 encoded, MD5 hashed, and
SHA-1 hashed. Not shown in the table, 2.77% of domains
in the homepage cookies allowed crawl, 3.74% domains in
interactive cookies allowed crawl, 3.73% of domains in the in-
teractive cookies blocked, 4.65% of domains in the interactive
spoofed Safari crawl, and 0.94% of domains in the webmail
crawl use encoded and hashed identifiers while syncing cook-
ies.

6 Concluding Remarks

In this paper we proposed KHALEESI, a machine learning
based approach that capitalizes on sequential context to detect
advertising and tracking request chains. We conclude the
paper by discussing some limitations and future work.
Data collection: Our data collection has some limitations that
pose internal and external threats to the validity of our find-
ings. For crawling, we used OpenWPM instrumented browser,
which is more complete than primitive crawlers such as Phan-
tomJS [25] but is still detectable [44]. Our web crawler used a
vantage point at an academic institute and the results may vary
across different networks (e.g., residential) and geographic
locations.
Feature robustness: KHALEESI’s robustness against feature
manipulation is not fool-proof. A motivated adversary can, in
theory, dial-up these feature manipulations (§4.3.2) to evade
detection by KHALEESI. However, that would require sig-
nificant changes to the infrastructure, techniques, and work-
ing model of the current advertising and tracking ecosystem.
For example, changing domain names and query string pa-
rameters requires non-trivial coordination between front-end
and back-end across several advertisers and trackers [19, 20].
P3P’s continued presence in many advertising and tracking
requests, despite its discontinuation for more than 6 years,
also highlights the slow change of affairs in the advertising
and tracking ecosystem [1].
Adversarial attacks: KHALEESI’s random forest ensemble
classifier may also be susceptible to adversarial attacks on
general machine learning classifiers (e.g., FGSM [42]). If

these adversarial attacks are realized against KHALEESI, coun-
termeasures such as adversarial training can be used to harden
random forest ensemble classifier [32, 33, 50].
Model accuracy over time: The web is continuously chang-
ing and so is the online advertising and tracking ecosystem.
As the advertising and tracking techniques evolve, this may
change the underlying data distributions on which KHALEESI
is trained. While we showed that KHALEESI’s accuracy de-
graded only minimally (§4.3.1), it might require periodic re-
training to ensure high accuracy. Future work can look into
automatically updating KHALEESI’s ML classifier using on-
line learning techniques based on user feedback.
Integration with other tools: KHALEESI focuses only on re-
quest chains and other standalone network requests are consid-
ered outside the scope. It is meant to be complemented with
filter lists to handle standalone network requests. Future work
can look into integrating KHALEESI into existing ML-based
ad and tracker blocking tools (e.g., [49, 64]).
Code and data release: KHALEESI’s browser extension, code,
and data is available at https://uiowa-irl.github.io/Kh
aleesi/.

Acknowledgment

We thank anonymous reviewers and our shepherd Blase Ur
for their constructive feedback. This work is supported in
part by the National Science Foundation under grant numbers
2051592, 2102347, 2103038, and 2103439.

References

[1] A Quick Look at P3P. https://blogs.msdn.microsoft.com
/ieinternals/2013/09/17/a-quick-look-at-p3p/.

[2] Adblock Plus. https://adblockplus.org/.

[3] Adblock Plus Github Repo. http://github.com/adblock
plus/adblockplus.

[4] Adform CookieApocalypse. https://site.adform.com/m
edia/86216/id-management-final.pdf.

https://uiowa-irl.github.io/Khaleesi/
https://uiowa-irl.github.io/Khaleesi/
https://blogs.msdn.microsoft.com/ieinternals/2013/09/17/a-quick-look-at-p3p/
https://blogs.msdn.microsoft.com/ieinternals/2013/09/17/a-quick-look-at-p3p/
https://adblockplus.org/
http://github.com/adblockplus/adblockplus
http://github.com/adblockplus/adblockplus
https://site.adform.com/media/86216/id-management-final.pdf
https://site.adform.com/media/86216/id-management-final.pdf

[5] Building a more private web: A path towards making third
party cookies obsolete. https://blog.chromium.org/2020/
01/building-more-private-web-path-towards.html.

[6] Disable third-party cookies in Firefox to stop some types of
tracking by advertisers. https://support.mozilla.org/e
n-US/kb/disable-third-party-cookies.

[7] Disconnect tracking protection. https://disconnect.me/tr
ackerprotection.

[8] EasyList. http://easylist.to/easylist/easylist.txt.

[9] EasyPrivacy. https://easylist.to/easylist/easypriva
cy.txt.

[10] Firefox Storage Access Policy. https://developer.mozil
la.org/en-US/docs/Mozilla/Firefox/Privacy/Storag
e_access_policy.

[11] Flashtalking Cookie Rejection. https://www.flashtalkin
g.com/identity-management#cookie-rejection.

[12] Full Third-Party Cookie Blocking and More. https:
//webkit.org/blog/10218/full-third-party-cookie-
blocking-and-more/.

[13] PageGraph’s open source implementation. https://github
.com/brave/brave-browser/wiki/PageGraph.

[14] Platform for Privacy Preferences. https://www.w3.org/P3P.

[15] Privacy Badger. https://www.eff.org/privacybadger.

[16] Protecting Against HSTS Abuse. https://webkit.org/blo
g/8146/protecting-against-hsts-abuse/.

[17] Setting First-Party Cookies by Redirection. https://patent
s.google.com/patent/US20150052217A1.

[18] SSP to DSP Cookie Syncing Explained. https://www.adops
insider.com/ad-exchanges/cookie-syncing/, 2011.

[19] Salesforce KUID. https://konsole.zendesk.com/hc/en
-us/articles/115013802488-KUID, 2020.

[20] Understanding Calls to the Demdex Domain. https:
//experienceleague.adobe.com/docs/audience-manag
er/user-guide/reference/demdex-calls.html?lang=
en#reference, 2021.

[21] ACAR, G., EUBANK, C., ENGLEHARDT, S., JUAREZ, M.,
NARAYANAN, A., AND DIAZ, C. The Web Never Forgets:
Persistent Tracking Mechanisms in the Wild. In CCS (2014).

[22] ALRIZAH, M., ZHU, S., XING, X., AND WANG, G. Errors,
Misunderstandings, and Attacks: Analyzing the Crowdsourc-
ing Process of Ad-blocking Systems. In IMC (2019).

[23] ANTONIADES, D., POLAKIS, I., KONTAXIS, G., ATHANA-
SOPOULOS, E., IOANNIDIS, S., MARKATOS, E. P., AND

KARAGIANNIS, T. We.b: The web of short urls. In World
Wide Web Conference (2011).

[24] AYENSON, M. D., WAMBACH, D. J., SOLTANI, A., GOOD,
N., AND HOOFNAGLE, C. J. Flash cookies and privacy ii: Now
with html5 and etag respawning. World Wide Web Internet and
Web Information Systems (2011).

[25] AZAD, B. A., STAROV, O., LAPERDRIX, P., AND NIKI-
FORAKIS, N. Web runner 2049: Evaluating third-party anti-bot
services. In International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment (2020).

[26] BASHIR, M. A., ARSHAD, S., ROBERTSON, W., AND WIL-
SON, C. Tracing information flows between ad exchanges
using retargeted ads. In USENIX Security Symposium (2016).

[27] BENCHAITA, W., GHAMRI-DOUDANE, S., AND TIXEUIL, S.
On the optimization of request routing for content delivery. In
SIGCOMM (2015).

[28] BHAGAVATULA, S., DUNN, C., KANICH, C., GUPTA, M.,
AND ZIEBART, B. Leveraging Machine Learning to Improve
Unwanted Resource Filtering. In ACM Workshop on Artificial
Intelligence and Security (2014).

[29] BREIMAN, L. Random Forests. In Machine learning (2001).

[30] BURGESS, J., CARLIN, D., O’KANE, P., AND SEZER, S.
Redirekt: Extracting malicious redirections from exploit kit
traffic. In 2020 IEEE Conference on Communications and
Network Security (CNS) (2020).

[31] CHANG, L., HSIAO, H.-C., JENG, W., KIM, T. H.-J., AND

LIN, W.-H. Security implications of redirection trail in popular
websites worldwide. In World Wide Web (2017).

[32] CHEN, H., ZHANG, H., BONING, D., AND HSIEH, C.-J. Ro-
bust decision trees against adversarial examples. In Interna-
tional Conference on Machine Learning (2019).

[33] CHEN, H., ZHANG, H., SI, S., LI, Y., BONING, D., AND

HSIEH, C.-J. Robustness verification of tree-based models. In
Advances in Neural Information Processing Systems (2019).

[34] CHHABRA, S., AGGARWAL, A., BENEVENUTO, F., AND KU-
MARAGURU, P. Phi.sh/$ocial: The phishing landscape through
short urls. In Proceedings of the Collaboration, Electronic
Messaging, Anti-Abuse and Spam Conference (2011).

[35] CIMPANU, C. Ad Network Uses DGA Algorithm to
Bypass Ad Blockers and Deploy In-Browser Miners.
https://www.bleepingcomputer.com/news/security/a
d-network-uses-dga-algorithm-to-bypass-ad-bloc
kers-and-deploy-in-browser-miners/, 2018.

[36] CRANOR, L. F., EGELMAN, S., SHENG, S., MCDONALD,
A. M., AND CHOWDHURY, A. P3P Deployment on Websites.
In Electronic Commerce Research and Applications (2008).

[37] ENGLEHARDT, S., HAN, J., AND NARAYANAN, A. I never
signed up for this! Privacy implications of email tracking. In
PETS (2018).

[38] ENGLEHARDT, S., AND NARAYANAN, A. Online Tracking: A
1-million-site Measurement and Analysis. In ACM Conference
on Computer and Communications Security (CCS) (2016).

[39] FOUAD, I., BIELOVA, N., LEGOUT, A., AND

SARAFIJANOVIC-DJUKIC, N. Missed by Filter Lists:
Detecting Unknown Third-Party Trackers with Invisible Pixels.
In PETS (2020).

[40] FULGHAM, B. Protecting Against HSTS Abuse.
https://webkit.org/blog/8146/protecting-again
st-hsts-abuse/, 2018.

[41] GAO, H., HU, J., WILSON, C., LI, Z., CHEN, Y., AND ZHAO,
B. Y. Detecting and characterizing social spam campaigns. In
ACM IMC (2010).

[42] GOODFELLOW, I. J., SHLENS, J., AND SZEGEDY, C. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572 (2014).

https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://support.mozilla.org/en-US/kb/disable-third-party-cookies
https://support.mozilla.org/en-US/kb/disable-third-party-cookies
https://disconnect.me/trackerprotection
https://disconnect.me/trackerprotection
http://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easyprivacy.txt
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://www.flashtalking.com/identity-management#cookie-rejection
https://www.flashtalking.com/identity-management#cookie-rejection
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://github.com/brave/brave-browser/wiki/PageGraph
https://github.com/brave/brave-browser/wiki/PageGraph
https://www.w3.org/P3P
https://www.eff.org/privacybadger
https://webkit.org/blog/8146/protecting-against-hsts-abuse/
https://webkit.org/blog/8146/protecting-against-hsts-abuse/
https://patents.google.com/patent/US20150052217A1
https://patents.google.com/patent/US20150052217A1
https://www.adopsinsider.com/ad-exchanges/cookie-syncing/
https://www.adopsinsider.com/ad-exchanges/cookie-syncing/
https://konsole.zendesk.com/hc/en-us/articles/115013802488-KUID
https://konsole.zendesk.com/hc/en-us/articles/115013802488-KUID
https://experienceleague.adobe.com/docs/audience-manager/user-guide/reference/demdex-calls.html?lang=en#reference
https://experienceleague.adobe.com/docs/audience-manager/user-guide/reference/demdex-calls.html?lang=en#reference
https://experienceleague.adobe.com/docs/audience-manager/user-guide/reference/demdex-calls.html?lang=en#reference
https://experienceleague.adobe.com/docs/audience-manager/user-guide/reference/demdex-calls.html?lang=en#reference
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://webkit.org/blog/8146/protecting-against-hsts-abuse/
https://webkit.org/blog/8146/protecting-against-hsts-abuse/

[43] GOOGLE. RTB - Cookie Matching. https://developers.g
oogle.com/authorized-buyers/rtb/cookie-guide.

[44] GOSSEN, D., JONKER, I. H., AND POLL, I. E. Design and
implementation of a stealthy OpenWPM web scraper. PhD
thesis, Master’s thesis, Radboud Universiteit Nijmegen, 2020.

[45] GUGELMANN, D., HAPPE, M., AGER, B., AND LENDERS,
V. An Automated Approach for Complementing Ad Blockers’
Blacklists. In PETS (2015).

[46] IKRAM, M., MASOOD, R., TYSON, G., KAAFAR, M. A.,
LOIZON, N., AND ENSAFI, R. The Chain of Implicit Trust:
An Analysis of the Web Third-party Resources Loading. In
The Web Conference (WWW) (2019).

[47] IQBAL, U. AdGraph’s open source implementation. https:
//github.com/uiowa-irl/AdGraph.

[48] IQBAL, U., SHAFIQ, Z., AND QIAN, Z. The Ad Wars: Ret-
rospective Measurement and Analysis of Anti-Adblock Filter
Lists. In IMC (2017).

[49] IQBAL, U., SNYDER, P., ZHU, S., LIVSHITS, B., QIAN, Z.,
AND SHAFIQ, Z. AdGraph: A Graph-Based Approach to Ad
and Tracker Blocking. In To appear in the Proceedings of the
IEEE Symposium on Security & Privacy (2020).

[50] KANTCHELIAN, A., TYGAR, J. D., AND JOSEPH, A. Evasion
and hardening of tree ensemble classifiers. In International
Conference on Machine Learning (2016).

[51] KOOP, M., TEWS, E., AND KATZENBEISSER, S. In-Depth
Evaluation of Redirect Tracking and Link Usage. In Proceed-
ings on Privacy Enhancing Technologies (PETS) (2020).

[52] LE PAGE, S., JOURDAN, G., BOCHMANN, G. V., FLOOD, J.,
AND ONUT, I. Using url shorteners to compare phishing and
malware attacks. In 2018 APWG Symposium on Electronic
Crime Research (eCrime) (2018).

[53] LENDACKY, T. The Platform for Privacy Preferences (P3P).
https://www-archive.mozilla.org/projects/p3p.

[54] MAGGI, F., FROSSI, A., ZANERO, S., STRINGHINI, G.,
STONE-GROSS, B., KRUEGEL, C., AND VIGNA, G. Two
years of short urls internet measurement: Security threats and
countermeasures. In Proceedings of the 22nd International
Conference on World Wide Web (2013).

[55] MDN. Redirect Tracking Protection. https:
//developer.mozilla.org/en-US/docs/Mozilla/Fi
refox/Privacy/Redirect_Tracking_Protection, 2020.

[56] MEKKY, H., ZHI-LI, R., ZHANG, SAHA, S., AND NUCCI,
A. Detecting malicious http redirections using trees of user
browsing activity. In INFOCOM (2014).

[57] OLEJNIK, L., TRAN, M.-D., AND CASTELLUCCIA, C. Sell-
ing off privacy at auction. In Network and Distributed System
Security Symposium (NDSS) (2014).

[58] PAPADOPOULOS, P., KOURTELLIS, N., AND MARKATOS,
E. P. Cookie synchronization: Everything you always wanted
to know but were afraid to ask. In The Web Conference (2019).

[59] QUINLAN, J. R. Induction of decision trees. Machine learning
1, 1 (1986), 81–106.

[60] REN, T., WITTMAN, A., CARLI, L. D., AND DAVIDSON,
D. An analysis of first-party cookie exfiltration due to cname
redirections. In Workshop on Measurements, Attacks, and
Defenses for the Web (MADWeb) (2021).

[61] SANCHEZ-ROLA, I., BALZAROTTI, D., KRUEGEL, C., VI-
GNA, G., AND SANTOS, I. Dirty Clicks: A Study of the Us-
ability and SecurityImplications of Click-related Behaviors on
the Web. In The Web Conference (WWW) (2020).

[62] SHUBA, A., MARKOPOULOU, A., AND SHAFIQ, Z.
NoMoAds: Effective and Efficient Cross-App Mobile
Ad-Blocking. In PETS (2018).

[63] SIBY, S., IQBAL, U., ENGLEHARDT, S., SHAFIQ, Z., AND

TRONCOSO, C. Webgraph: Capturing advertising and tracking
information flows for ro-bust blocking. In To appear in the
USENIX Security Symposium (2022).

[64] SJÖSTEN, A., SNYDER, P., PASTOR, A., PAPADOPOULOS,
P., AND LIVSHITS, B. Filter List Generation for Underserved
Regions. In WWW (2020).

[65] SNYDER, P., VASTEL, A., AND LIVSHITS, B. Who Filters the
Filters: Understanding the Growth, Usefulness and Efficiency
of Crowdsourced Ad Blocking. In ACM SIGMETRICS (2020).

[66] TSYMBAL, A. The problem of concept drift: definitions and
related work. Computer Science Department, Trinity College
Dublin 106 (2004).

[67] WANG, W., ZHENG, Y., XING, X., KWON, Y., ZHANG, X.,
AND EUGSTER, P. WebRanz: Web Page Randomization For
Better Advertisement Delivery and Web-Bot Prevention. In
ACM SIGSOFT FSE (2016).

[68] WEBKIT. Tracking Prevention in WebKit. https://webkit
.org/tracking-prevention/.

[69] WILANDER, J. Bounce Tracking Protection. https://gith
ub.com/privacycg/proposals/issues/6.

[70] WILANDER, J. Clear-Site-Data For Cross-Site Track-
ing. https://github.com/privacycg/storage-partiti
oning/issues/11.

[71] WILANDER, J. ITP 2.0. https://webkit.org/blog/8311/
intelligent-tracking-prevention-2-0/.

[72] WILANDER, J. ITP 2.2. https://webkit.org/blog/8828/
intelligent-tracking-prevention-2-2/.

[73] WILANDER, J. ITP 2.3. https://webkit.org/blog/9521/
intelligent-tracking-prevention-2-3/.

[74] WILANDER, J. Safari ITP Classifier. https://bugs.webki
t.org/show_bug.cgi?id=168347.

[75] WILANDER, J. CNAME Cloaking and Bounce Tracking
Defense. https://webkit.org/blog/11338/cname-cloa
king-and-bounce-tracking-defense/, 2020.

[76] YU, Z., MACBETH, S., MODI, K., AND PUJOL, J. M. Track-
ing the Trackers. In World Wide Web Conference (2016).

[77] ZAIFENG, Z. Who is Stealing My Power III: An Adnetwork
Company Case Study, 2018. .

https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://github.com/uiowa-irl/AdGraph
https://github.com/uiowa-irl/AdGraph
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Redirect_Tracking_Protection
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Redirect_Tracking_Protection
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Redirect_Tracking_Protection
https://webkit.org/tracking-prevention/
https://webkit.org/tracking-prevention/
https://github.com/privacycg/proposals/issues/6
https://github.com/privacycg/proposals/issues/6
https://github.com/privacycg/storage-partitioning/issues/11
https://github.com/privacycg/storage-partitioning/issues/11
https://webkit.org/blog/8311/intelligent-tracking-prevention-2-0/
https://webkit.org/blog/8311/intelligent-tracking-prevention-2-0/
https://webkit.org/blog/8828/intelligent-tracking-prevention-2-2/
https://webkit.org/blog/8828/intelligent-tracking-prevention-2-2/
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://bugs.webkit.org/show_bug.cgi?id=168347
https://bugs.webkit.org/show_bug.cgi?id=168347
https://webkit.org/blog/11338/cname-cloaking-and-bounce-tracking-defense/
https://webkit.org/blog/11338/cname-cloaking-and-bounce-tracking-defense/
http://blog.netlab.360.com/who-is-stealing-my-power-iii-an-adnetwork-company-case-study-en/

A Artifact Appendix

A.1 Abstract
We propose KHALEESI, a machine learning (ML) approach that
captures the essential sequential context needed to effectively detect
advertising and tracking request chains. We release KHALEESI’s
classification code, ML model, browser extension, and data sets.
Classification code is written in Python 3.6, the ML model is trained
using Scikit, the browser extension is written in JavaScript/HTML,
and the data is crawled using OpenWPM.

A.2 Artifact check-list (meta-information)
• Binary: A browser extension to block advertising and tracking

request chains. The extension is designed and tested in Mozilla
Firefox.

• Model: ML model to detect advertising and tracking request
chains. Released ML model was trained on request chains from
homepages of Alexa top-10K websites.

• Data set: Data sets to train and test ML model. We release
crawls of homepages, home and sub pages, home and sub
pages with cookies blocked, and home and sub pages with
browser spoofed as Safari. All data sets are crawls of Alexa
top-10K websites. The data contains requests, responses, and
JS execution.

• Run-time environment: Scripts can be run using Python 3.6
and above. The code was tested on Ubuntu 16.04.7 LTS.

• How much disk space required (approximately)?: We rec-
ommend a disk space of ∼100GB to train the classifier. The
browser extension does not have any disk space constraints.

• How much time is needed to complete experiments (ap-
proximately)?: The classifier can be trained in ∼ 10 hours.
The browser extension blocks the ads instantaneously.

• Publicly available (explicitly provide evolving version ref-
erence)?: KHALEESI’s code, data, and browser extension is
available at https://uiowa-irl.github.io/Khaleesi/.

• Archived (explicitly provide DOI or stable reference)?:
KHALEESI’s code, data, and browser extension is avail-
able at https://github.com/uiowa-irl/Khaleesi/tree
/bd28513878a363b39b0ee9e7a6a4350f71672912

A.3 Description
A.3.1 How to access

KHALEESI’s code, ML model, and browser extension are available
on Github at: https://uiowa-irl.github.io/Khaleesi/. Data
sets are available on Zenodo at: https://doi.org/10.5281/zeno
do.6084582.

A.3.2 Hardware dependencies

KHALEESI ML model was trained on a machine with 16 cores and
96 GB RAM. We recommend a disk space of ∼100 GB to train the
classifier. The model can be tested on hardware with less resources.

A.3.3 Software dependencies

KHALEESI browser extension was designed and tested on Mozilla
Firefox. We trained and tested KHALEESI ML model on Ubuntu
16.04.7 LTS.

A.3.4 Data set dependencies

KHALEESI is trained on data set crawled through OpenWPM version
0.10.0. The code might require some minor modifications to process
data from newer versions of OpenWPM.

A.4 Installation
We provided instructions to run KHALEESI on Github.

A.5 Experiment workflow
In addition to instructions on Github, we provide detailed instruc-
tions to run the code below:

A.5.1 Training & Testing ML model

We list the step-by-step process to train and test KHALEESI’s ML
model below:

1. Data collection: Collect network and JavaScript initiated re-
quests using OpenWPM.

2. Request chain construction: Organize network and JavaScript
initiated requests into chains. Request chains can be con-
structed with HTTP and JavaScript chain construction scripts.

3. Request chain labeling: Once constructed, label request chains
using EasyList (EL) and EasyPrivacy (EP) filter lists. Use filter
list labeling script and EL/EP filter lists to label the chains.

4. Feature extraction and transformation: After labeling, extract
features from the request chains using using feature extraction
script and encode them using feature encoding script.

5. Model training: Since, KHALEESI relies on previous confi-
dence as a feature, extract the previous confidence for each
request in a chain before training the final model. The previous
confidence can be extracted using compute previous confidence
script. The last block of previous confidence script stores the
final trained model. An already trained model is available in
data directory.

6. Testing the model: KHALEESI uses 10-fold cross validation to
test the data sets. The encoded features with previous confi-
dence can be tested using test classifier script and the accuracy
can be computed using compute accuracy script.

A.5.2 Analysis of Request Chains

We release scripts to analyze cookie syncing and bounce tracking
instances in request chains. Use the cookie syncing and bounce
tracking scripts to identify cookie syncing and bounce tracking
instances, respectively.

https://scikit-learn.org/stable/
https://github.com/openwpm/OpenWPM
https://uiowa-irl.github.io/Khaleesi/
https://github.com/uiowa-irl/Khaleesi/tree/bd28513878a363b39b0ee9e7a6a4350f71672912
https://github.com/uiowa-irl/Khaleesi/tree/bd28513878a363b39b0ee9e7a6a4350f71672912
https://uiowa-irl.github.io/Khaleesi/
https://doi.org/10.5281/zenodo.6084582
https://doi.org/10.5281/zenodo.6084582
https://github.com/openwpm/OpenWPM
https://uiowa-irl.github.io/Khaleesi/
https://github.com/uiowa-irl/Khaleesi/blob/main/code/http_chain_builder_json.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/js_chain_builder_json.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/filter_lists_labeling.ipynb
https://github.com/uiowa-irl/Khaleesi/tree/main/ground_truth
https://github.com/uiowa-irl/Khaleesi/blob/main/code/feature_extraction.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/encode_features.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/compute_previous_confidence.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/data/final_clf.joblib
https://github.com/uiowa-irl/Khaleesi/blob/main/code/test-classifier.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/compute-accuracy.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/cookie_syncing_heuristic.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/bounce_tracking_investigation.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/bounce_tracking_investigation.ipynb

A.5.3 Browser Extension

To add KHALEESI to Firefox, enter about:debugging in the URL
bar, click This Firefox, click Load Temporary Add-on, navigate to
the extension’s directory and open manifest.json. To view the re-
quests blocked by KHALEESI, open extension’s console by clicking
Inspect in about:debugging or see the network tab in the Firefox
Developer Tools.

A.6 Evaluation and expected results
Training & Testing ML Model: Upon successful execution, the work-
flow should produce a trained ML model and output its accuracy.

Analysis of Request Chains: Upon successful execution, the scripts
should list the cookie syncing and bounce tracking instances in
request chains.

Browser Extension: After installation, the browser extension should
block advertising and tracking request chains.

A.7 Version

Based on the LaTeX template for Artifact Evaluation V20220119.

	Introduction
	Background & Related Work
	Background
	Related Work

	Khaleesi
	Motivation & Key Idea
	Request Chain Construction
	Feature Extraction
	Classification

	Evaluation
	Accuracy
	Baseline Comparison
	Robustness Analysis
	Classification accuracy over time
	Robustness against evasions

	Feature Analysis
	Breakage Analysis
	Performance

	Discussion
	Request Chain Graph
	Analysis of Request Chains

	Concluding Remarks
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data set dependencies

	Installation
	Experiment workflow
	Training & Testing ML model
	Analysis of Request Chains
	Browser Extension

	Evaluation and expected results
	Version

